4.7 Article

Proteins, Lipids, and Water in the Gas Phase

Journal

MACROMOLECULAR BIOSCIENCE
Volume 11, Issue 1, Pages 50-59

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.201000291

Keywords

GROMACS; insulin; lysozyme; myoglobin; OmpA; structures; Trp-Cage; ubiquitin; X-ray

Funding

  1. Helmholtz Association
  2. Swedish research council [SNIC 022/09-10]

Ask authors/readers for more resources

Evidence from mass-spectrometry experiments and molecular dynamics simulations suggests that it is possible to transfer proteins, or in general biomolecular aggregates, from solution to the gas-phase without grave impact on the structure. If correct, this allows interpretation of such experiments as a probe of physiological behavior. Here, we survey recent experimental results from mass spectrometry and ion-mobility spectroscopy and combine this with observations based on molecular dynamics simulation, in order to give a comprehensive overview of the state of the art in gas-phase studies. We introduce a new concept in protein structure analysis by determining the fraction of the theoretical possible numbers of hydrogen bonds that are formed in solution and in the gas-phase. In solution on average 43% of the hydrogen bonds is realized, while in vacuo this fraction increases to 56%. The hydrogen bonds stabilizing the secondary structure (alpha-helices, beta-sheets) are maintained to a large degree, with additional hydrogen bonds occurring when side chains make new hydrogen bonds to rest of the protein rather than to solvent. This indicates that proteins that are transported to the gas phase in a native-like manner in many cases will be kinetically trapped in near-physiological structures. Simulation results for lipid-and detergent-aggregates and lipid-coated (membrane) proteins in the gas phase are discussed, which in general point to the conclusion that encapsulating proteins in something'' aids in the conservation of native-like structure. Isolated solvated micelles of cetyl-tetraammonium bromide quickly turn into reverse micelles whereas dodecyl phosphocholine micelles undergo much slower conversions, and do not quite reach a reverse micelle conformation within 100 ns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available