4.5 Article

In vitro potency, pharmacokinetic profiles and pharmacological activity of optimized anti-IL-21R antibodies in a mouse model of lupus

Journal

MABS
Volume 2, Issue 3, Pages 335-346

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/mabs.2.3.11850

Keywords

affinity maturation; phage display; monoclonal antibody; autoimmunity; lupus; IL-21; IL-21R; pharmacokinetics; anti-product antibodies

Ask authors/readers for more resources

Using phage display, we generated a panel of optimized neutralizing antibodies against the human and mouse receptors for interleukin 21 (IL-21), a cytokine that is implicated in the pathogenesis of many types of autoimmune disease. Two antibodies, Ab-01 and Ab-02, which differed by only four amino acids in V-L CDR3, showed potent inhibition of human and mouse IL-21R in cell-based assays and were evaluated for their pharmacological and pharmacodynamic properties. Ab-01, but not Ab-02, significantly reduced a biomarker of disease (anti-dsDNA antibodies) and IgG deposits in the kidney in the MRL-Fas(lpr) mouse model of lupus, suggesting that anti-IL-21R antibodies may prove useful in the treatment of lupus. Ab-01 also had a consistently higher exposure (AUC(0-infinity)) than Ab-02 following a single dose in rodents or cynomolgus monkeys (2-3-fold or 4-7-fold, respectively). Our data demonstrate that small differences in CDR3 sequences of optimized antibodies can lead to profound differences in in vitro and in vivo properties, including differences in pharmacological activity and pharmacokinetic profiles. The lack of persistent activity of Ab-02 in the MRL-Fas(lpr) mouse lupus model may have been a consequence of faster elimination, reduced potency in blocking the effects of mouse IL-21R, and more potent/earlier onset of the anti-product response relative to Ab-01.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available