4.5 Article

Oxidized eicosapentaenoic acids more potently reduce LXRα-induced cellular triacylglycerol via suppression of SREBP-1c, PGC-1β and GPA than its intact form

Journal

LIPIDS IN HEALTH AND DISEASE
Volume 12, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1476-511X-12-73

Keywords

Oxidation; Eicosapentaenoic acid; HepG2; Triacylglycerol; LXR alpha; SREBP-1c; PGC-1 beta; GPA

Funding

  1. Kieikai Research Foundation

Ask authors/readers for more resources

Dietary polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA), improve lipid metabolism and contribute to the prevention of vascular diseases such as atherosclerosis. However, EPA in the diet is easily oxidized at room temperature and several types of oxidized EPA (OEPA) derivatives are generated. To compare the efficiencies of OEPAs on lipid metabolism with EPA, human hepatocellular liver carcinoma cell line (HepG2) was treated with EPA or OEPAs and their effects on lipid metabolism related genes were studied. OEPAs more potently suppressed the expression of sterol-responsive element-binding protein (SREBP)-1c, a major transcription factor that activates the expression of lipogenic genes, and its downstream target genes than did EPA under conditions of lipid synthesis enhanced by T0901317, a synthetic liver X receptor (LXR) agonist. Furthermore, PGC-1 beta, a coactivator of both LXR alpha and SREBP-1, was markedly down-regulated by OEPAs compared with EPA. The treatment of OEPAs also significantly down-regulated the expression of glycerol-3-phosphate acyltransferase (GPA), the initiating enzyme in triacylglycerol (TG) synthesis, more than EPA. Therefore, the advantageous effects of OEPAs on cardiovascular diseases might be due to their SREBP-1c, PGC-1 beta and GPA mediated ameliorating effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available