4.3 Article

Measurement and interpretation of solute concentration gradients in the benthic boundary layer

Journal

LIMNOLOGY AND OCEANOGRAPHY-METHODS
Volume 9, Issue -, Pages 1-13

Publisher

WILEY
DOI: 10.4319/lom.2011.9.1

Keywords

-

Funding

  1. DFG-Research Center/Excellence Cluster
  2. Ocean in the Earth System
  3. Max Planck Society

Ask authors/readers for more resources

The coastal ocean is characterized by high exchange rates of organic matter, oxygen, and nutrients between the sediment and the water column. The solutes that are exchanged between the sediment and the overlying water column are transported across the benthic boundary layer (BBL) by means of turbulent diffusion. Thus, solute concentration gradients in the BBL contain valuable information about the respective fluxes. In this study, we present the instrumentation and sampling strategies to measure oxygen and nutrient concentration gradients in the BBL. We provide the theoretical background and the calculation procedure to derive ratios of nutrient and oxygen fluxes from these concentration gradients. The noninvasive approach is illustrated at two sampling sites in the western Baltic Sea where nutrient and oxygen concentration gradients of up to 5 and 30 mu M m(-1), respectively, were measured. Nutrient and oxygen flux ratios were used to establish a nitrogen flux balance between sediment and water column indicating that 20% and 50% of the mineralized nitrogen left the sediment in form of N-2 (station A and B, respectively). The results are supported by sediment incubation experiments of intact sediment cores, measuring denitrification rates, and oxygen uptake. The presented flux ratio approach is applicable without knowledge of turbulent diffusivities in the BBL and is, therefore, unaffected by non-steady-state current velocities and diffusivities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available