4.7 Article

Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ 13C pulse-chase method

Journal

LIMNOLOGY AND OCEANOGRAPHY
Volume 59, Issue 4, Pages 1275-1287

Publisher

WILEY
DOI: 10.4319/lo.2014.59.4.1275

Keywords

-

Funding

  1. Netherlands Organisation for Scientific Research (NWO)

Ask authors/readers for more resources

Carbon flow from benthic diatoms to heterotrophic bacterial was traced in an intertidal sediment for 5 consecutive days. C-13-labeled bicarbonate was sprayed onto the sediment surface during low tide and C-13-label incorporation in major carbon pools, intermediate metabolites, and biomarkers were monitored. Phospholipid-derived fatty acid (PLFA) and ribosomal ribonucleic acid (rRNA) were used to identify the responsible members of the microbial community at class and family phylogenetic resolution. Diatoms were the predominant primary producers, and Gammaproteobacteria, Bacteroidetes, and Deltaproteobacteria (21%, 8%, and 7% of 16S rRNA-derived clone library) were major heterotrophic bacterial groups. Both C-13-PLFA and C-13-rRNA data suggest a fast transfer of label from diatoms (60 nmol C-13 g(-1) dry weight [dry wt]) to bacteria (7 nmol C-13 g(-1) dry wt) during the first 24 h, which was probably due to the exudation of low-molecular-weight organic compounds by diatoms that could be directly utilized by bacteria. After this initial fast transfer, labeling of bacteria proceeded at a slower rate to 13 nmol C-13 g(-1) dry wt on the third day of the experiment, which coincided with the degradation of carbohydrates in water-extractable extracellular polymeric substances (EPS) initially produced by the diatoms. Water-extractable EPS (primarily as glucose) was a major intermediate and its turnover explained 75% of the total carbohydrate processing in the sediment. Labeling in bacteria tracked labeling in the diatoms, suggesting a closely coupled system. The heterotrophic bacterial groups benefited equally from the organic matter released by the diatoms, suggesting limited specialization in this microbial food web.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available