4.7 Article

Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells

Journal

LIFE SCIENCES
Volume 90, Issue 13-14, Pages 525-530

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2012.01.013

Keywords

ROS; NF-kappa B; p53; ERK; p38; JNK; Tubulointerstitial injury; Chronic kidney disease

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [23700830]
  2. Grants-in-Aid for Scientific Research [23700830] Funding Source: KAKEN

Ask authors/readers for more resources

Aims: Monocyte chemotactic protein-1 (MCP-1) plays an important role in recruiting monocytes/macrophages to injured tubulointerstitial tissue. The present study examined whether indoxyl sulfate, a uremic toxin, regulates renal expression of MCP-1. Main methods: The effect of indoxyl sulfate on the expression of MCP-1 was determined using human proximal tubular cells (HK-2 cells) and following animals: (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive indoxyl sulfate-administered rats (DN + IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive indoxyl sulfate-administered rats (DH + IS). Key findings: DN + IS, DH, and DH + IS rats showed significantly increased mRNA expression of MCP-1 in the kidneys compared with DN rats. DH + IS rats tended to show increased mRNA expression of MCP-1 in the kidneys compared with DH rats. Immunohistochemistry demonstrated the stimulatory effects of indoxyl sulfate on MCP-1 expression and monocyte/macrophage infiltration in the kidneys. Indoxyl sulfate upregulated mRNA and protein expression of MCP-1 in HK-2 cells. Indoxyl sulfate induced activation of ERK, p38, and JNK as well as of NF-kappa B and p53 in HK-2 cells. An antioxidant, and inhibitors of NF-kappa B, p53, ERK pathway (MEK1/2), and JNK suppressed indoxyl sulfate-induced mRNA expression of MCP-1 in HK-2 cells. Significance: Indoxyl sulfate upregulates renal expression of MCP-1 through production of reactive oxygen species (ROS), and activation of NF-kappa B, p53, ERK, and JNK in proximal tubular cells. Thus, accumulation of indoxyl sulfate in chronic kidney disease might be involved in the pathogenesis of tubulointerstitial injury through induction of MCP-1 in the kidneys. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available