4.7 Article

Differential impairment of spatial and nonspatial cognition in a mouse model of brain aging

Journal

LIFE SCIENCES
Volume 85, Issue 3-4, Pages 127-135

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2009.05.003

Keywords

d-galactose; Spatial cognition; Nonspatial cognition; Antioxidant enzyme; Caspase-3

Funding

  1. National Natural Science Foundation of China [30670699]
  2. National 863 Plans Projects [2006AA02Z431, NCET-06-0277]
  3. China Postdoctoral Foundation [20060400974]

Ask authors/readers for more resources

Aims: Chronic exposure to d-galactose (D-Gal), which causes acceleration in aging and simulated symptoms of natural senescence, has been used as a reliable animal model of aging. However, the different influences of D-Gal on spatial and nonspatial cognition are as yet unclear. Main methods: In the present study. the object recognition test (ORT), object location test (OLT) and Y-maze test were carried out to assess the cognitive performance of mice after 8 weeks of chronic D-Gal exposure. The expression of oxidative-stress biomarkers in the prefrontal cortex (PFC) and caspase-3 in the hippocampus (HIP) were also determined. Key findings: The results of the behavioral tests indicated that after chronic D-Gal exposure, the spatial memory of mice was seriously impaired, whereas nonspatial cognition remained intact. D-Gal exposure also induced more significant changes in malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities in the HIP than in the PFC. Furthermore, chronic D-Gal exposure triggered more substantial caspase-3 overexpression in the HIP than in the PFC. Significance: Together, these findings suggest the impairment of spatial, but not nonspatial, cognitive ability after chronic D-Gal exposure. The differential nature of this impairment might be due to the more substantial reduction of antioxidant enzyme activities and more severe neuronal apoptosis mediated by caspase-3 in the HIP. The present results also indicate that the HIP and HIP-dependent spatial cognition might be more susceptible to oxidative stress during senescence or other pathological processes. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available