4.3 Article

Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib

Journal

LEUKEMIA & LYMPHOMA
Volume 50, Issue 12, Pages 2017-2029

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/10428190903147637

Keywords

p38 Map kinase; CML; dasatinib

Funding

  1. VISN 17
  2. Department of Veterans affairs, NIH [CA121192, HL082946, HL067256, HL61897]
  3. NATIONAL CANCER INSTITUTE [R01CA121192, P30CA060553] Funding Source: NIH RePORTER
  4. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R56HL061897, R01HL082946, R01HL067256, R01HL061897] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Dasatinib, a dual Src/Abl tyrosine kinase inhibitor, has significant antileukemic effects against various imatinib mesylate-resistant BCR/ABL mutants. Despite well-documented inhibitory effects of dasatinib on BCR/ABL kinase, the exact downstream cellular events leading to generation of its potent antileukemic effects remain to be defined. We provide evidence that p38 Map kinase (MAPK) pathway is activated leading to increased upregulation of mixed lineage kinase 3, MKK3/6, MSK1, and Mapkapk2, upon treatment of BCR/ABL expressing cells with dasatinib, including cells expressing various imatinib-resistant mutants, except for T315I. Our data demonstrate that such dasatinib-dependent activation of p38 MAPK and its effectors plays a critical role in the generation of antileukemic responses, since pharmacological inhibition of p38 or siRNA-mediated knockdown of its expression reverse dasatinib-mediated apoptosis, cell cycle arrest, and anti-proliferative effects. p38 MAPK inhibition also reversed dasatinib-induced suppression of CML patient-derived leukemic colony-forming units progenitor growth in vitro, as well as BCR/ABL expressing KT-1 cell-derived leukemic progenitor growth. Altogether, our findings suggest a critical role for p38 MAPK pathway in the generation of antileukemic effects of dasatinib, and raise the possibility that development of novel means to enhance p38 MAPK activation in BCR/ABL expressing cells may be an approach to promote antileukemic responses and, possibly, reverse T315I mutation-mediated resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available