4.6 Article

Gamma radiation synthesis of colloidal AgNPs for its potential application in antimicrobial fabrics

Journal

RADIATION PHYSICS AND CHEMISTRY
Volume 115, Issue -, Pages 62-67

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2015.05.041

Keywords

Radiolytic reduction; PVA stabilized; Silver nanoparticles; Screen printing; Antimicrobial fabrics

Funding

  1. Sarvottam Industries, Jodhpur

Ask authors/readers for more resources

Highly stable colloidal solution of silver nanoparticles in a water-isopropanol-polyvinyl alcohol system was prepared through Co-60-gamma radiation at total dose of 35 kGy at dose rate of 5.67 kGy/h under nitrogen atmosphere. Ultraviolet-visible (UV-vis), X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) of the obtained colloidal solution indicated the formation of spherical shaped well mono dispersed silver nanoparticles with average diameter about 30 nm having very narrow size distribution. The radiolytically obtained nanosilver colloid was coated onto cotton fabrics by a simple industrial screen printing method and its adhesion with the fabric was found out by leaching studies using Atomic Absorption Spectrophotometry (AAS). Good adhesion was achieved by the adopted method wherein 89.5% of the coated nanosilver was retained in the fabric even after keeping the fabrics soaked in water for more than 60 h. Antimicrobial efficacy tests of the nanosilver coated cotton fabric showed that nanosilver coating is effective in killing both bacterial and fungal strains even at very low nanosilver loading (21.81 mu gm/cm(2)). Nanosilver coating on the cotton fabric did not allow microbes (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans) to adhere and proliferate on fabric surface. Staphylococci (Staphylococcus aureus) and Yeast (Candida albicans) showed inhibition zones in presence of these nanosilver coated fabrics while no inhibition zone was observed with the uncoated control fabric. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available