4.7 Article

Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease

Journal

LEUKEMIA
Volume 28, Issue 1, Pages 129-137

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/leu.2013.239

Keywords

RUNX1; mutation analysis; next-generation sequencing

Ask authors/readers for more resources

We studied the utility and clinical relevance of RUNX1 (runt-related transcription factor 1) mutations and their application as residual disease detection markers using next-generation deep-sequencing. Mutation screening was prospectively performed in 814 acute myeloid leukemia patients. At diagnosis, 211/814 (25.9%) patients harbored mutations with a median clone size of 39% (range: 2-96%). Furthermore, in 57 patients paired samples from diagnosis and relapse were analyzed. In 47/57 (82.5%) cases the same alterations detected at diagnosis were present at relapse, whereas in 1/57 (1.8%) cases the mutation from the diagnostic sample was no longer detectable. Discrepancies were observed in 9/57 (15.8%) cases, also including the occurrence of novel RUNX1 mutations not restricted to those regions affected at diagnosis. Moreover, in 103 patients the prognostic impact of residual levels of RUNX1 mutations during complete remission was studied. Separation of patients according to median residual mutation burden into 'good responders' and 'poor responders' (median: 3.61%; range: 0.03-48.0%) resulted in significant differences of both event-free (median 21.0 vs 5.7 months, P<0.001) and overall survival (OS; median 56.9 vs 32.0 months, P = 0.002). In conclusion, deep-sequencing revealed that RUNX1 mutations qualify as patient-specific markers for individualized disease monitoring. The measurement of mutation load may refine the assignment into distinct risk categories and treatment strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available