4.5 Article

Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

Journal

RADIATION ONCOLOGY
Volume 10, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13014-015-0342-7

Keywords

Gadolinium; Liposomes; Drug uptake; Neutron capture therapy; Glioma; Theranostic

Funding

  1. Bundesministerium fur Bildung und Forschung [05KS7UMA]
  2. Vienna Science and Technology Fund (WWTF) [LS11-036]
  3. German Research Foundation [SFB 1066]

Ask authors/readers for more resources

Background: Neutron capture therapy for glioblastoma has focused mainly on the use of B-10 as neutron capture isotope. However, Gd-157 offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist (R)) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Methods: Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with Gd-157 as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. Results: The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Conclusions: Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in Gd-157 capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available