4.4 Article

Intra-Organ Biodistribution of Gold Nanoparticles Using Intrinsic Two-Photon-Induced Photoluminescence

Journal

LASERS IN SURGERY AND MEDICINE
Volume 42, Issue 7, Pages 630-639

Publisher

WILEY
DOI: 10.1002/lsm.20935

Keywords

gold nanoshell; gold nanorod; two-photon-induced photoluminescence

Funding

  1. American Society Laser Medicine Surgery
  2. National Institutes of Health [R01 CA132032]

Ask authors/readers for more resources

Background and Objectives: Gold nanoparticles (GNPs) such as gold nanoshells (GNSs) and gold nanorods (GNRs) have been explored in a number of in vitro and in vivo studies as imaging contrast and cancer therapy agents due to their highly desirable spectral and molecular properties. While the organ-level biodistribution of these particles has been reported previously, little is known about the cellular level or intra-organ biodistribution. The objective of this study was to demonstrate the use of intrinsic two-photon-induced photoluminescence (TPIP) to study the cellular level biodistribution of GNPs. Study Design/Materials and Methods: Tumor xenografts were created in 27 male nude mice (Swiss nu/nu) using HCT 116 cells (CCL-247; American Type Culture Collection (ATCC), Manassas, VA, human colorectal cancer cell line). GNSs and GNRs were systemically injected 24 hours prior to tumor harvesting. A skin flap with the tumor was excised and sectioned as 8 mu m thick tissues for imaging GNPs under a custom-built multiphoton microscope. For multiplexed imaging, nuclei, cytoplasm, and blood vessels were demonstrated by hematoxylin and eosin (H&E) staining, YOYO-1 iodide staining, and CD31-immunofluorescence staining. Results: Distribution features of GNPs at the tumor site were determined from TPIP images. GNSs and GNRs had a heterogeneous distribution with higher accumulation at the tumor cortex than tumor core. GNPs were also observed in unique patterns surrounding the perivascular region. While most GNSs were confined at the distance of approximately 400 pm inside the tumor edge, GNRs were shown up to 1.5 mm penetration inside the edge. Conclusions: We have demonstrated the use of TPIP imaging in a multiplexed fashion to image both GNPs and nuclei, cytoplasm, or vasculature simultaneously. We also confirmed that TPIP imaging enabled visualization of GNP distribution patterns within the tumor and other critical organs. These results suggest that direct luminescence-based imaging of metal nanoparticles holds a valuable and promising position in understanding the accumulation kinetics of GNPs. In addition, these techniques will be increasingly important as the use of these particles progress to human clinical trials where standard histopathology techniques are used to analyze their effects. Lasers Surg. Med. 42:630-639, 2010. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available