4.7 Article

Adsorption of F2C=CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

Journal

APPLIED SURFACE SCIENCE
Volume 353, Issue -, Pages 986-994

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2015.07.006

Keywords

Titanium dioxide; Chlorotrifluoroethene; Atmospheric pollutants; DFT modeling; Infrared spectroscopy; Surface chemistry

Funding

  1. CSCF (Sistema per il Calcolo Scientific di Ca' Foscari) [HP10CVN2S9, HP10CVEVP7]
  2. MIUR through PRIN funds for project STAR (Spectroscopic and computational Techniques for Astrophysical and atmospheric Research)
  3. PRIN funds for project SPETTRAA (Molecular Spectroscopy for Atmospherical and Astrochemical Research: Experiment, Theory and Applications)
  4. University Ca' Foscari Venezia (ADiR funds)

Ask authors/readers for more resources

Photodegradation over titanium dioxide (TiO2) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F2C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of -45.6 and -41.0 kJ mol(-1) according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available