4.8 Article

Particle sorting using a subwavelength optical fiber

Journal

LASER & PHOTONICS REVIEWS
Volume 7, Issue 2, Pages 289-296

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.201200087

Keywords

Particle sorting; optical force; subwavelength optical fiber; evanescent field

Funding

  1. National Natural Science Foundation of China [61007038]
  2. Guangdong Natural Science Foundation [S2012010010061]

Ask authors/readers for more resources

Size-based particle sorting using a subwavelength optical fiber was demonstrated with 600-nm and 1-mu m sizes of polystyrene particles. Optical forces acting on the particles were calculated based on three-dimensional finite-difference time-domain simulations at wavelengths of 808, 1047, and 1310 nm propagating in a subwavelength optical fiber with diameter of 800 nm. Calculations indicate that by launching two counter-propagating laser beams at different wavelengths into the fiber, the directions of the resultant optical scattering forces acting on the two particle sizes can be opposite along the fiber, which leads to a countertransport of the particles. To verify the theoretical prediction, experiments were performed using the 800-nm fiber to sort the two particle sizes. The results show that with two counterpropagating beams at 808 and 1310 nm, a continuous particle sorting was achieved. Measured particle velocities were in agreement with the theoretical calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available