4.8 Review

Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion

Journal

LASER & PHOTONICS REVIEWS
Volume 2, Issue 5, Pages 377-399

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.200810013

Keywords

-

Funding

  1. Chemical Sciences, Geosciences, and Biosciences Division
  2. Office of Basic Energy Sciences
  3. U. S. Department of Energy [DE-AC36-99-GO10337]

Ask authors/readers for more resources

Within the range of photon energies illuminating the Earth's surface, absorption of a photon by a conventional photovoltaic semiconductor device results in the production of a single electron-hole pair; energy of a photon in excess of the semiconductor's bandgap is efficiently converted to heat through electron and hole interactions with the crystal lattice. Recently, colloidal semiconductor nanocrystals and nanocrystal films have been shown to exhibit efficient multiple electron-hole pair generation from a single photon with energy greater than twice the effective band gap. This multiple carrier pair process, referred to as multiple exciton generation (MEG), represents one route to reducing the thermal loss in semiconductor solar cells and may lead to the development of low cost, high efficiency solar energy devices. We review the current experimental and theoretical understanding of MEG, and provide views to the near-term future for both fundamental research and the development of working devices which exploit MEG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available