4.8 Review

Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers

Journal

LASER & PHOTONICS REVIEWS
Volume 2, Issue 6, Pages 429-448

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.200810016

Keywords

Fiber laser; fiber amplifier; mode stability; distributed coupling; high power; dispersion control; power scaling; nonlinear distortion; mode area

Ask authors/readers for more resources

This paper describes the physics and properties of a novel optical fiber that Would be attractive for building high-power fiber lasers and amplifiers. Instead of propagating light in the fundamental, Gaussian-shaped mode, we describe a fiber in which the signal is forced to travel in a single, desired higher order mode (HOM), This provides for several advantages over the conventional approach, ranging from significantly higher ability to scale mode areas (and hence laser powers) to managing dispersion for ultra-short pulses - a capability that is practically nonexistent in conventional fibers. Particularly interesting is the fact that this approach challenges conventional wisdom, and demonstrates that for applications re(requiring meter-length fibers (as in high-power lasers), signal stability actually increases with mode order, Using this approach, we demonstrate mode areas exceeding 3200 mu m(2), and propagate signals with negligible mode distortions over up to 50-meter lengths. We describe several Pulse propagation experiments in which we test the nonlinear response of this fiber platform, ranging from managing dispersive effects in femtosecond Pulse Systems, to reducing Brillouin scattering impairments in systems operating with the nanosecond pulses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available