4.6 Article

Silica-Supported Sterically Hindered Amines for CO2 Capture

Journal

LANGMUIR
Volume 34, Issue 41, Pages 12279-12292

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b02472

Keywords

-

Funding

  1. National Science Foundation [CBET-1403298, CBET-1403239]
  2. UNCAGE-ME, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012577]

Ask authors/readers for more resources

Most studies exploring the capture of CO2 on solid-supported amines have focused on unhindered amines or alkylimine polymers. It has been observed in extensive solution studies that another class of amines, namely sterically hindered amines, can exhibit enhanced CO2 capacity when compared to their unhindered counterparts. In contrast to solution studies, there has been limited research conducted on sterically hindered amines on solid supports. In this work, one hindered primary amine and two hindered secondary amines are grafted onto mesoporous silica at similar amine coverages, and their adsorption performances are investigated through fixed bed breakthrough experiments and thermogravimetric analysis. Furthermore, chemisorbed CO2 species formed on the sorbents under dry and humid conditions are elucidated using in situ Fourier-transform infrared spectroscopy. Ammonium bicarbonate formation and enhancement of CO2 adsorption capacity is observed for all supported hindered amines under humid conditions. Our experiments in this study also suggest that chemisorbed CO2 species formed on supported hindered amines are weakly bound, which may lead to reduced energy costs associated with regeneration if such materials were deployed in a practical separation process. However, overall CO2 uptake capacities of the solid supported hindered amines are modest compared to their solution counterparts. The oxidative and thermal stabilities of the supported hindered amine sorbents are also assessed to give insight into their operational lifetimes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available