4.6 Article

Mechanisms of Carbon Nanotube Aggregation and the Reversion of Carbon Nanotube Aggregates in Aqueous Medium

Journal

LANGMUIR
Volume 30, Issue 36, Pages 10899-10909

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la5014279

Keywords

-

Funding

  1. 3M nontenured faculty grant [260-03-A-05]
  2. University of Michigan at Ann Arbor
  3. University of Michigan
  4. NIH [1DP2OD008693]

Ask authors/readers for more resources

Single-walled carbon nanotubes (SWCNTs) dispersed in aqueous medium have many potential applications in chemistry, biology, and medicine. Reversible aggregation of SWCNTs dispersed in water has been frequently reported, but the mechanisms behind are not well understood. Here we show that SWCNTs dispersed into aqueous medium assisted by various charged molecules can be reversibly aggregated by a variety of electrolytes with two distinct mechanisms. Direct binding of counterions to SWCNTs leads to aggregation when the surface charge is neutralized from 74 to 86%. This aggregation is driven by electrostatic instead of van der Waals interactions, thus showing similarity to that of DNA condensation induced by multivalent cations. Sequestration of counterions by chelating reagents leads to the redispersion of SWCNT aggregates. In contrast to various metal ions, polyelectrolytes have the unique ability to induce SWCNT aggregation by bridging between individual SWCNTs. Aggregation through the latter mechanism can be engineered to be reversible by exploiting various mechanisms of chain breaking, including reduction of disulfide bond in the polymer chain, and the cleavage action of proteolytic enzymes. These findings clarify the mechanisms of SWCNT aggregation, and have broad implications in various applications of SWCNTs in water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available