4.6 Article

Adsorption of Lysozyme on Hyaluronic Acid Functionalized SBA-15 Mesoporous Silica: A Possible Bioadhesive Depot System

Journal

LANGMUIR
Volume 30, Issue 43, Pages 12996-13004

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la503224n

Keywords

-

Funding

  1. MIUR, PRIN [2010BJ23MN-002]

Ask authors/readers for more resources

Silica-based ordered mesoporous materials are very attractive matrices to prepare smart depot systems for several kinds of therapeutic agents. This work focuses on the well-known SBA-15 mesoporous silica and lysozyme, an antimicrobial protein. In order to improve the bioadhesion properties of SBA-15 particles, the effect of hyaluronic acid (HA) functionalization on lysozyme adsorption was investigated. SBA-15 samples having high (H-SBA) and low (L-SBA) levels of functionalization were analyzed during the three steps of the preparations: (1) introduction of the -NH2 groups to obtain the SBA-NH2 samples; (2) functionalization with HA to obtain the SBA-HA matrices; (3) adsorption of lysozyme. All silica matrices were characterized through N2-adsorption/desorption isotherms, small-angle X-ray scattering, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The whole of the experimental data suggests that a high level of functionalization of the silica surface allows for a negligible lysozyme adsorption mainly due to unfavorable electrostatic interactions (H-SBA-NH2) or steric hindrance (H-SBA-HA). A low degree of functionalization of the silica surface brings about a very good performance toward lysozyme adsorption, being 71% (L-SBA-NH2) and 63% (L-SBA-HA) respectively, compared to that observed for original SBA-15. Finally, two different kinetic models-a pseudo-second order and a intraparticle diffusion-were compared to fit lysozyme adsorption data, the latter being more reliable than the former.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available