4.6 Article

Margination Propensity of Vascular-Targeted Spheres from Blood Flow in a Microfluidic Model of Human Microvessels

Journal

LANGMUIR
Volume 29, Issue 8, Pages 2530-2535

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la304746p

Keywords

-

Funding

  1. NSF
  2. Royal Thai Government
  3. Directorate For Engineering [1054352] Funding Source: National Science Foundation
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1054352] Funding Source: National Science Foundation

Ask authors/readers for more resources

Many variants of vascular-targeted carriers (VTCs) have been investigated for therapeutic intervention in several human diseases. However, in order to optimize the functionality of VTC in vivo, carriers' physical properties, such as size and shape, are important considerations for a VTC design that evades the reticuloendothelial system (RES) and successfully interacts with the targeted vessel wall. Nonetheless, little evidence has been presented on the role of size in VTC's interactions with the vascular wall, particularly in the microcirculation. Thus, in this work, we explore how particle size, along with hemodynamics (blood shear rate and vessel size) and hemorheology (blood hematocrit) affect the capacity for spheres to marginate (localize and adhere) to inflamed endothelium in a microfluidic model of human microvessels. Microspheres, particularly the 2 mu m spheres, were found to show disproportionately higher margination than nanospheres in all hemodynamic conditions evaluated due to the poor ability of the latter to localize to the wall region from midstream. This work represents the first evidence that nanospheres may not exhibit near wall excess in microvessels, e.g., arterioles and venules, and therefore may not be suitable for imaging and drug delivery applications in cancer and other diseases affecting microvessels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available