4.6 Article

Covalent Layer-by-Layer Assembly of Redox-Active Polymer Multilayers

Journal

LANGMUIR
Volume 29, Issue 24, Pages 7257-7265

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la304498g

Keywords

-

Funding

  1. MESA+ Institute for Nanotechnology of the University of Twente
  2. Netherlands Organization for Scientific Research (NWO) [700.56.322]

Ask authors/readers for more resources

Poly(ferrocenyl(3-bromopropyl)methylsilane) and poly(ethylene imine) are employed in a layer-by-layer deposition process to form covalently connected, redox-active multilayer thin films by means of an amine alkylation reaction. The stepwise buildup of these multilayers on silicon, ITO, and quartz substrates was monitored by UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), static contact angle measurements, surface plasmon resonance (SPR), atomic force microscopy, ellipsometry, and cyclic voltammetry, which provide evidence for a linear increase in multilayer thickness with the number of deposited bilayers. Upon oxidation and reduction, these covalently interconnected layers do not disassemble, in contrast to poly(ferrocenylsilane) (PFS) layers featuring similar backbone structures that are held together by electrostatic forces. The PFS/PEI multilayers are effective for the electrochemical sensing of ascorbic acid and hydrogen peroxide and show improved sensing performance at higher bilayer numbers. These covalently linked layers are readily derivatized further and can therefore be regarded as a versatile platform for creating robust, tailorable, redox-active interfaces with applications in sensing and biofuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available