4.6 Article

On the Derjaguin Offset in Boundary-Lubricated Nanotribological Systems

Journal

LANGMUIR
Volume 29, Issue 45, Pages 13760-13772

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la4026443

Keywords

-

Funding

  1. Austrian COMET Program (Project K2 XTribology) [824187]
  2. ERDF
  3. province of Lower Austria (Onlab Project)

Ask authors/readers for more resources

We performed molecular dynamics simulations of boundary-lubricated sliding, varying the boundary lubricant type, its molecular surface coverage, the substrate roughness, and the load. The resulting load versus friction behavior was then analyzed to study how changes in lubricant type, coverage, and roughness affect the extrapolated friction force at zero load, the so-called Derjaguin offset. A smooth-particle-based evaluation method by the authors, applied here for the first time to visualize the sliding interface between the two layers of boundary lubricant, allowed the definition and calculation of a dimensionless normalized sliding resistance area, which was then related to the Derjaguin offset. This relationship excellently reflects the molecular surface coverage, which determines the physical condition of the lubricant, and can differentiate between some lubricant-specific frictional properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available