4.6 Article

Chemical Modification of Polymer Brushes via Nitroxide Photoclick Trapping

Journal

LANGMUIR
Volume 29, Issue 21, Pages 6369-6376

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la401179s

Keywords

-

Funding

  1. Alexander von Humboldt Foundation
  2. WWU Munster
  3. Alexander von Humboldt Foundation (Bonn, Germany)

Ask authors/readers for more resources

The preparation of polymer brushes (PBs) bearing alpha-hydroxyalkylphenylketone (2-hydroxy-2-methyl-1-phenylpropan-1-one) moieties as photoreactive polymer backbone substituents is presented. Photoreactive polymer brushes with defined thicknesses (up to 60 nm) and high grafting densities are readily prepared by surface initiated nitroxide mediated radical polymerization (SINMP). The photoactive moieties can be transformed via Norrish-type I photoreaction to surface bound acyl radicals. Photolysis in the presence of a persistent nitroxide leads to chemically modified PBs bearing acylalkoxyamine moieties as side chains resulting from trapping of the photogenerated acyl radicals with nitroxides. Application of functionalized nitroxides to the photochemical PB postmodification provides functionalized PBs bearing cyano, polyethylene glycol (PE(), perfluoroalkyl, and biotin moieties. As shown for one case, photochemical postfunctionalization of the PB through a mask using a biotin-conjugated nitroxide as the trapping reagent leads to the corresponding site selective chemically modified PB, which is successfully used for site specific streptavidin immobilization. Surface analysis of PBs was performed by contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), attenuated total reflection (ATR), fourier transform infrared (FTIR) spectroscopy, and fluorescence, microscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available