4.6 Article

Formation of Substrate-Supported Membranes from Mixtures of Long- and Short-Chain Phospholipids

Journal

LANGMUIR
Volume 28, Issue 25, Pages 9649-9655

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la300696z

Keywords

-

Funding

  1. Ministry of Education, Science, Culture and Sports (MEXT)
  2. Japan Society for the Promotion of Science [18510107, 21023021]
  3. Sekisui Chemical Grant Program
  4. Grants-in-Aid for Scientific Research [18510107, 21023021] Funding Source: KAKEN

Ask authors/readers for more resources

We studied the formation of substrate-supported planar phospholipid bilayers (SPBs) on glass and silica from mixtures of long- and short-chain phospholipids to assess the effects of detergent additives on SPB formation. 1,2-Hexyanoyl-sn-glycero-3-phosphocholine (DHPC-C6) and 1,2-heptanoyl-sn-glycero-3-phosphocholine (DHPC-C7) were chosen as short-chain phospholipids. 1-Palmitoyl-2-oleol-sn-glycero-3-phosphocholine (POPC) was used as a model long-chain phospholipid. Kinetic studies by quartz crystal microbalance with dissipation monitoring (QCM-D) showed that the presence of short-chain phospholipids significantly accelerated the formation of SPBs. Rapid rinsing with a buffer solution did not change the adsorbed mass on the surface if POPC/DHPC-C6 mixtures were used below the critical micelle concentration (cmc) of DHPC-C6, indicating that an SPB composed of POPC molecules remained on the surface. Fluorescence microscopy observation showed homogeneous SPBs, and the fluorescence recovery after photobleaching (FRAP) measurements gave a diffusion coefficient comparable to that for SPBs formed from POPC vesicles. However, mixtures of POPC/DHPC-C7 resulted in a smaller mass of lipid adsorption on the substrate. FRAP measurements also yielded significantly smaller diffusion coefficients, suggesting the presence of defects. The different behaviors for DHPC-C6 and DHPC-C7 point to the dual roles of detergents to enhance the formation of SPBs and to destabilize them, depending on their structures and aggregation properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available