4.6 Article

Universal Surface-Initiated Polymerization of Antifouling Zwitterionic Brushes Using a Mussel-Mimetic Peptide Initiator

Journal

LANGMUIR
Volume 28, Issue 18, Pages 7258-7266

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la300738e

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01 EB005772, R37 DE014193]
  2. A*STAR Graduate Academy of Singapore

Ask authors/readers for more resources

We report a universal method for the surface-initated polymerization (SIP) of an antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides, and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) that combines atom-transfer radical polymerization (ATRP) initiating alkyl bromide with L-3,4-dihydroxyphenylalanine (DOPA) and lysine. The simple dip-coating of substrates with variable wetting properties and compositions, including Teflon, in a BrYKY solution at pH 8.5 led to the formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA), on all substrates, resulting in high-density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy, and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface-grafted polymer brush modifications for biomedical and other applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available