4.6 Article

Immobilized Streptavidin Gradients as Bioconjugation Platforms

Journal

LANGMUIR
Volume 28, Issue 5, Pages 2710-2717

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la204714p

Keywords

-

Funding

  1. National Health and Medical Research Council, Australia [ID 631931]

Ask authors/readers for more resources

Surface density gradients of streptavidin (SAV) were created on solid surfaces and demonstrated functionality as a bioconjugation platform. The surface density of immobilized streptavidin steadily increased in one dimension from 0 to 235 ng cm(-2) over a distance of 10 mm. The density of coupled protein was controlled by its immobilization onto a polymer surface bearing a gradient of aldehyde group density, onto which SAV was covalently linked using spontaneous imine bond formation between surface aldehyde functional groups and primary amine groups on the protein. As a control, human serum albumin was immobilized in the same manner. The gradient density of aldehyde groups was created using a method of simultaneous plasma copolymerization of ethanol and propionaldehyde. Control over the surface density of aldehyde groups was achieved by manipulating the flow rates of these vapors while moving a mask across substrates during plasma discharge. Immobilized SAV was able to bind biotinylated probes, indicating that the protein retained its functionality after being immobilized. This plasma polymerization technique conveniently allows virtually any substrate to be equipped with tunable protein gradients and provides a widely applicable method for bioconjugation to study effects arising from controllable surface densities of proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available