4.6 Article

Quantum Dot and Gold Nanoparticle Immobilization for Biosensing Applications using Multidentate Imidazole Surface Ligands

Journal

LANGMUIR
Volume 28, Issue 39, Pages 13943-13951

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la302985x

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. NSERC

Ask authors/readers for more resources

A facile approach for modification of solid substrates with multidentate imidazole ligands was developed for immobilization of high densities of quantum dots (QDs) that were capped with hydrophilic thiol-based ligands, and for immobilization of noble metal nanoparticles. Imidazole polymer was synthesized using poly(acrylic acid) as a backbone, and grafted on amine functionalized substrate in a two-step approach. The polymer-modified surface was characterized using ellipsometry, water contact angle, and X-ray photoelectron spectroscopy. Fluorescence spectroscopy and scanning electron microscopy were used to evaluate nanoparticle immobilization. Homogeneous, high density (ca. 5 x 10(11) cm(-2)) QD films formed via self-assembly were obtained within 4-6 h. Similarly, the imidazole polymer was also shown to be effective for immobilization of gold nanoparticles as a uniform film. By making use of the pH-sensitive affinity of the imidazole rings to zinc on the surface of QDs, it was possible to achieve regeneration of functional ligands suitable for subsequent immobilization of new QDs. Immobilized QDs were used as a platform for bioconjugation with oligonucleotides and peptides. The transduction of nucleic acid hybridization and enzyme activity using QDs as energy donors in interfacial fluorescence resonance energy transfer (FRET) indicated that the immobilization strategy preserved the functional properties of the QDs. The multidentate imidazole ligands used for QD immobilization offer the highest denticity of binding in comparison to the currently available approaches without compromise in their optical properties and ability to interact with biomolecules in solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available