4.6 Article

Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide

Journal

LANGMUIR
Volume 28, Issue 34, Pages 12509-12517

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la3022563

Keywords

-

Ask authors/readers for more resources

This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic layer serves as an excellent platform for initiator attachment, and the zwitterionic polymer generated via subsequent SI-ATRP exhibits very good antifouling properties. Patterned polymer coatings can be obtained when the surface with covalently attached initiator was subjected to photomasked UV-irradiation, in which the C-Br bond that is present in the initiator was broken upon exposure to UV light. A further, highly versatile top-functionalization of the zwitterionic polymer brush was achieved by a strain-promoted alkyne-azide cycloaddition, without compromising its antifouling property. The attached bioligand (here: biotin) enables the specific immobilization of target proteins in a spatially confined fashion, pointing to future applications of this approach in the design of micropatterned sensing platforms on ITO substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available