4.6 Article

Looped Structure of Flowerlike Micelles Revealed by 1H NMR Relaxometry and Light Scattering

Journal

LANGMUIR
Volume 27, Issue 16, Pages 9843-9848

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la2019605

Keywords

-

Ask authors/readers for more resources

We present experimental proof that so-called flowerlike micelles exist and that they have some distinctly different properties compared to their starlike counterparts. Amphiphilic AB diblock and BAB triblock copolymers consisting of poly(ethylene glycol) (PEG) as hydrophilic A block and thermosensitive poly(N-isopropylacrylamide) (pNIPAm) B block(s) were synthesized via atom transfer radical polymerization (ATRP). In aqueous solutions, both block copolymer types form micelles above the cloud point of pNIPAm. Static and dynamic light scattering measurements in combination with NMR relaxation experiments proved the existence of flowerlike micelles based on pNIPAm(16kDa)-PEG(4kDa)-pNIPAm(16kDa) which had a smaller radius and lower mass and aggregation number than starlike micelles based on mPEG(2kDa)-pNIPAm(16kDa). Furthermore, the PEG surface density was much lower for the flowerlike micelles, which we attribute to the looped configuration of the hydrophilic PEG block. H-1 NMR relaxation measurements showed biphasic T-2 relaxation for PEG, indicating rigid PEG segments close to the micelle core and more flexible distal segments. Even the flexible distal segments were shown to have a lower mobility in the flowerlike micelles compared to the starlike micelles, indicating strain due to loop formation. Taken together, it is demonstrated that self-assemblies of BAB triblock copolymers have their hydrophilic block in a looped conformation and thus indeed adopt a flowerlike conformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available