4.6 Article

Interactions between Block Copolymers and Single-Walled Carbon Nanotubes in Aqueous Solutions: A Small-Angle Neutron Scattering Study

Journal

LANGMUIR
Volume 27, Issue 2, Pages 751-759

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la103096n

Keywords

-

Funding

  1. Israel Science Foundation [191/07]
  2. European Commission [226507 (NMI3)]

Ask authors/readers for more resources

The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D2O/H2O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D2O solvent composition, which is much higher than the expected value of 17% D2O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available