4.6 Article

Dopamine-Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution

Journal

LANGMUIR
Volume 27, Issue 6, Pages 2819-2825

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la104981s

Keywords

-

Ask authors/readers for more resources

The deposition of polydopamine films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu2+ instead of O-2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 am, whereas the film growth stops at 45 +/- 5 am in the presence of 0(2). In addition, the films prepared from Cu2+ containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available