4.6 Article

Block Copolymer Vesicle Permeability Measured by Osmotic Swelling and Shrinking

Journal

LANGMUIR
Volume 27, Issue 8, Pages 4884-4890

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la105045m

Keywords

-

Funding

  1. Agence Nationale de la Recherche (ANR) [-07-NANO-061 MONO-POLY]

Ask authors/readers for more resources

Vesicle response to osmotic shock provides insight into membrane permeability, highly relevant value for applications ranging from nanoreactor experimentation to drug delivery. The osmotic shock approach has been employed extensively to elucidate the properties of phospholipid vesicles (liposomes) and of varieties of polymer vesicles (polymersomes). This study seeks to compare the membrane response for two varieties of polymersomes, a comb type siloxane surfactant, poly-(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO), and a diblock copolymer, polybutadiene-b-poly(ethylene oxide) (PBut-b-PEO). Despite similar molecular weights and the same hydrophilic block (PEO), the two copolymers possess different hydrophobic blocks (PBut and PDMS) and corresponding glass transition temperatures (-31 and -123 degrees C, respectively). Dramatic variations in membrane response are observed during exposure to osmotic pressure differences, and values for polymer membrane permeability to water are extracted. We propose an explanation for the observed phenomena based on the respective properties of the PBut-b-PEO and PDMS-g-PEO membranes in terms of cohesion, thickness, and fluidity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available