4.6 Article

Preparation of Pickering Emulsions and Colloidosomes with Relatively Narrow Size Distributions by Stirred Cell Membrane Emulsification

Journal

LANGMUIR
Volume 27, Issue 6, Pages 2357-2363

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la104970w

Keywords

-

Funding

  1. EPSRC
  2. University of Sheffield

Ask authors/readers for more resources

Stirred cell membrane emulsification has been used to prepare Pickering emulsions and covalently cross-linked colloidosomes using poly(glycerol monomethacrylate) stabilized polystyrene particles as the sole emulsifier. Pickering emulsions of 44-269 mu m in size can be prepared with coefficients of variation as low as 25%, by varying the emulsification parameters. The cell membranes consisted of 5 mu m pores with a pore-to-pore spacing of 200 mu m. Significantly more uniform emulsions are produced when these open pores are restricted to a narrow ring around the membrane surface. Increasing the oil flux rate through this annular ring membrane increases both the size and polydispersity of the resulting emulsion droplets. There was no evidence for a push off force contributing to droplet detachment over the oil flux range investigated. Increasing the paddle stirrer speed from 500 to 1500 rpm reduces the average droplet diameter from 269 to 51,tan while simultaneously decreasing the coefficient of variation from 47% to 25%. Any further increase in surface shear led to droplet breakup within the dispersion cell and resulted in a significantly more polydisperse emulsion. The Pickering emulsions reported here have much narrower droplet size distributions than those prepared in control experiments by conventional homogenization (25% vs 74% coefficients of variation). Finally, low polydispersity colloidosomes can be conveniently prepared by the addition of an oil soluble polymeric cross-linker to the dispersed phase to react with the stabilizer chains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available