4.6 Article

Role of an Amide Bond for Self-Assembly of Surfactants

Journal

LANGMUIR
Volume 26, Issue 5, Pages 3077-3083

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la902979m

Keywords

-

Ask authors/readers for more resources

Self-assembly in Solution and adsorption at the air-water interface and at Solid Surfaces were investigated for two amino-acid-based surfactants with conductimetry, NMR, tensiometry, quartz crystal microbalance with monitoring or the dissipation (QCM-D), and surface plasmon resonance (SPR). The surfactants studied were sodium N-lauroylglycinate and sodium N-lauroylsarcosinate, differing only in a methyl group on the amide nitrogen for the sarcosinate. Thus, the glycinate but not the surfactant is capable of forming intermolecular hydrogen bonds via the amide group. It was found that the amide bond, N-methylated or not, gave a substantial contribution to the hydrophilicity of the amphiphile. The ability to form intermolecular hydrogen bonds led to tighter packing at the air-water interface and ill a hydrophobic surface. It also increased the tendency for precipitation as all acid-soap pair oil addition of acid. Adsorption of the surfactants at a gold surface Was also investigated and gave unexpected results. The sarcosine-based surfactant seemed to give bilayer adsorption, while the glycine derivative adsorbed as a monolayer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available