4.6 Article

Pt-Ru/CeO2/Carbon Nanotube Nanocomposites: An Efficient Electrocatalyst for Direct Methanol Fuel Cells

Journal

LANGMUIR
Volume 26, Issue 14, Pages 12383-12389

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la101060s

Keywords

-

Funding

  1. National Natural Science Foundation of China [20903105]
  2. Chinese Academy of Sciences [KJCX2.YW.H16]

Ask authors/readers for more resources

Pt-Ru/CeO2/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO2 nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO2/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO2/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO2 in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available