4.6 Article

Nanoscale Characterization of the Equilibrium and Kinetic Response of Hydrogel Structures

Journal

LANGMUIR
Volume 26, Issue 13, Pages 11249-11257

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la1005677

Keywords

-

Ask authors/readers for more resources

The use of hydrogel nanostructured patterns and films in biomedical micro- and nanodevices requires the ability to analyze and understand their response properties at the nanoscale. Herein, the thermoresponse behavior of atom transfer radical polymerization (ATRP) grown poly(ethylene glycol) n dimethacrylate (PEGnDMA) cross-linked poly(N-isopropyl acrylamide) (PNIPAAm) hydrogel thin films over gold was studied. By controlling the mesh size of the hydrogel matrix through tuning the cross-linking density (i.e., using different molecular weight cross-linker and/or various amounts of cross-linker), the hydrogel volume swelling ratio was tailored for response applications. Thermoresponsive patterns exhibited a broad lower critical solution temperature (LCST) swelling transition, while rms roughness analysis of the hydrogel surface showed a sharp LCST transition. Mass and viscoelastic property changes were monitored using quartz crystal microbalance with dissipation (QCM-D), and the rapid response behavior of the thin hydrogel films was observed. The tunable response behavior along with the controlled growth of the hydrogel achieved via ATRP at the nanoscale make them applicable as functional components in diagnostic and therapeutic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available