4.6 Article

Antifouling and Antimicrobial Mechanism of Tethered Quaternary Ammonium Salts in a Cross-linked Poly(dimethylsiloxane) Matrix Studied Using Sum Frequency Generation Vibrational Spectroscopy

Journal

LANGMUIR
Volume 26, Issue 21, Pages 16455-16462

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la1001539

Keywords

-

Funding

  1. Office of Naval Research [N00014-02-1-0832, N00014-06-1-0952, N00014-08-1-1211, N00014-07-1099]

Ask authors/readers for more resources

Poly(dimethylsiloxane) (PDMS) materials containing chemically bound (tethered) quaternary ammonium salt (QAS) moieties are being developed as new contact-active antimicrobial coatings. Such coatings are designed to inhibit the growth of microorganisms on surfaces for a variety of applications which include ship hulls and biomedical devices. The antimicrobial activity of these coatings is a function of the molecular surface structure generated during film formation. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study polymer surface structures at the molecular level in different chemical environments. SFG was successfully used to characterize the surface structures of PDMS coatings containing tethered QAS moieties that possess systematic variations in QAS chemical composition in air, in water, and in a nutrient growth medium. The results indicated that the surface structure was largely dependent on the length of the alkyl chain attached to the nitrogen atom of the QAS moiety as well as the length of alkyl chain spanning between the nitrogen atom and silicon atom of the QAS moiety. The SFG results correlated well with the antimicrobial activity, providing a molecular interpretation of the activity. This research showed that SFG can be effectively used to aid in the development of new antimicrobial coating technologies by correlating the chemical structure of a coating surface to its antimicrobial activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available