4.6 Article

Nanomechanics of Full-Length Nebulin: An Elastic Strain Gauge in the Skeletal Muscle Sarcomere

Journal

LANGMUIR
Volume 25, Issue 13, Pages 7496-7505

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la9009898

Keywords

-

Funding

  1. Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases
  2. National Institutes of Health
  3. Department of Health and Human Services

Ask authors/readers for more resources

Nebulin, a family of giant modular proteins (MW 700-800 kDa), acts as a F-actin thin filament ruler and calcium-linked regulator of actomyosin interaction. The nanomechanics of full length, native rabbit nebulin was investigated with an atomic force microscope by tethering, bracketing, and stretching full-length molecules via pairs of site-specific antibodies that were attached covalently, one to a protein resistant self-assembled monolayer of oligoethylene glycol and the other to the cantilever. Using this new nanomechanics platform that enables the identification of single molecule events via an unbiased analysis of detachment force and distance of all force curves, we showed that nebulin is elastic and extends to similar to 1 mu m by external force up to an antibody detachment force of similar to 300-400 pN. Upon stretching, nebulin unravels and yields force spectra with craggy mountain range profiles with variable numbers and heights of force peaks. The peak spacings, analyzed by the model-independent, empirical Hilbert-Huang transform method, displayed underlying periodicities at similar to 15 and similar to 22 nm that may result from the unfolding of one or more nebulin modules between force peaks. Nebulin may act as an elastic strain gauge that interacts optimally with actin only under appropriate strain and stress. This stretch to match protein ruler may also exert a compressive force that stabilizes thin filaments against stress during contraction. We propose that the elasticity of nebulin is integral and essential in the muscle sarcomere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available