4.6 Article

Modeling Micelle-Templated Mesoporous Material SBA-15: Atomistic Model and Gas Adsorption Studies

Journal

LANGMUIR
Volume 25, Issue 10, Pages 5802-5813

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la801560e

Keywords

-

Funding

  1. Department of Energy (DOE) [DE-FG02-98ER14847]

Ask authors/readers for more resources

We report the development of a realistic molecular model for mesoporous silica SBA-15, which includes both the large cylindrical mesopores and the smaller micropores in the pore walls. The methodology for modeling the SBA-15 structure involves molecular and mesoscale simulations combined with geometrical interpolation techniques. First, a mesoscale model is prepared by mimicking the synthesis process using lattice Monte Carlo simulations. The main physical features of this mesoscale pore model are then carved out of an atomistic silica block; both the mesopores and the micropores are incorporated from the mimetic simulations. The calculated pore size distribution, surface area. and simulated TEM images of the model structure are in good agreement with those obtained from experimental samples of SBA-15. We then investigate the adsorption of argon in this structure using Grand Canonical Monte Carlo (GCMC) simulations. The adsorption results for our SBA-15 model are compared with those for a similar model that does not include the micropores; we also compare with results obtained in a regular cylindrical pore. The simulated adsorption isotherm for the SBA-15 model shows semiquantitative agreement with the experimental isotherm for a SBA-15 sample having a similar pore size. We observe that the presence of the micropores leads to increased adsorption at low pressure compared to the case of a model without micropores in the pore walls. At higher pressures, for all models, the Filling proceeds via the monolayer-multilayer adsorption on the mesopore surface followed by capillary condensation, which is mainly controlled by the mesopore diameter and is not influenced by the presence of the micropores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available