4.6 Article

Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces

Journal

LANGMUIR
Volume 24, Issue 1, Pages 9-14

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la702327z

Keywords

-

Ask authors/readers for more resources

In this work, dynamically tunable, superlyophobic surfaces capable of undergoing a transition from profound superlyophobic behavior to almost complete wetting have been demonstrated for the first time. In the initial state, with no voltage applied, these surfaces exhibit contact angles as high as 150 degrees for a wide variety of liquids with surface tensions ranging from 21.8 mN/m (ethanol) to 72.0 mN/m (water). Upon application of an electrical voltage, a transition from the superlyophobic state to wetting is observed. We have examined experimentally and theoretically the nature of these transitions. The reported results provide novel methods of manipulating liquids on the microscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available