4.6 Article

Microwave, Photo- and Thermally Responsive PNIPAm-Gold Nanoparticle Microgels

Journal

LANGMUIR
Volume 24, Issue 20, Pages 11959-11966

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la8019556

Keywords

-

Funding

  1. University of Massachusetts, Lowell
  2. International Network of Emerging Science and Technology Group
  3. Phillip Morris USA

Ask authors/readers for more resources

Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 urn and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm-co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of double oil-in-water-in-oil (o/w/o) emulsion. It is facilitated by adjusting the balance of the interfacial tensions between the aqueous phase (in which a water-soluble drug may be dissolved), the monomer phase and the continuous phase. The water-in-oil (w/o) droplets containing 26 wt% NIPAm and Am monomers, 0.1 wt% Tween-80 surfactant, FITC fluorescent dye and colloidal gold nanoparticles spontaneously developed a core-shell morphology that was fixed by in situ photopolymerization. The results demonstrate new reversibly swelling and deswelling AuNP/PNIPAm hybrid core-shell microcapsules and microgels that can be actuated by visible light and/or microwave radiation (<= 1250nm) and/or temperature. This is the first study to demonstrate that incorporating AuNPs speeds up the response kinetics of PNIPAm, and hence enhances the sensitivity to external stimuli of PNIPAm. These microgels can have potential applications for microfluidic switches or microactuators, photosensors, and various nanomedicine applications in controlled delivery and release.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available