4.6 Article

Surface charge microscopy: Novel technique for mapping charge-mosaic surfaces in electrolyte solutions

Journal

LANGMUIR
Volume 24, Issue 15, Pages 8013-8020

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la801269z

Keywords

-

Ask authors/readers for more resources

The effective surface potential, called the potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles call be calculated. A significant limitation of these electrokinetic measurements is that only all average value of the zeta potential/streaming potential is measured-regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit Surface heterogeneities. To detect heterogeneities in Surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential-particularly at microscopic and submicroscopic resolutions-are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte Solutions with different ionic strengths and pH Values. The colloidal force measurements were carried Out stepwise across the boundary between adjacent phases. At each location, the force-distance Curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the Surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available