4.6 Article

Enzymatic Hydrolysis of Native Cellulose Nanofibrils and Other Cellulose Model Films: Effect of Surface Structure

Journal

LANGMUIR
Volume 24, Issue 20, Pages 11592-11599

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la801550j

Keywords

-

Funding

  1. North Carolina Biotech Center (NCBC) [2007-CFG-8016]
  2. Novozymes of North America, Inc.

Ask authors/readers for more resources

Model films of native cellulose nanofibrils, which contain both crystalline cellulose I and amorphous domains, were used to investigate the dynamics and activities of cellulase enzymes. The enzyme binding and degradation of nanofibril films were compared with those for other films of cellulose, namely, Langmuir-Schaefer and spin-coated regenerated cellulose, as well as cellulose nanocrystal cast films. Quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency and energy dissipation during incubation at varying enzyme concentrations and experimental temperatures. Structural and morphological changes of the cellulose films upon incubation with enzymes were evaluated by using atomic force microscopy. The QCM-D results revealed that the rate of enzymatic degradation of the nanofibril films was much faster compared to the other types of cellulosic films. Higher enzyme loads did not dramatically increase the already fast degradation rate. Real-time measurements of the coupled contributions of enzyme binding and hydrolytic reactions were fitted to an empirical model that closely described the cellulase activities. The hydrolytic potential of the cellulase mixture was found to be considerably affected by the nature of the substrates, especially their crystallinity and morphology. The implications of these observations are discussed in this report.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available