4.6 Article

Kinetics of Enzyme Attack on Substrates Covalently Attached to Solid Surfaces: Influence of Spacer Chain Length, Immobilized Substrate Surface Concentration and Surface Charge

Journal

LANGMUIR
Volume 24, Issue 20, Pages 11762-11769

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la801932f

Keywords

-

Funding

  1. BBSRC
  2. Wellcome Trust
  3. Royal Society
  4. EPSRC [EP/E036244/1] Funding Source: UKRI
  5. Biotechnology and Biological Sciences Research Council [E20057] Funding Source: researchfish
  6. Engineering and Physical Sciences Research Council [EP/E036244/1] Funding Source: researchfish

Ask authors/readers for more resources

The use of alpha-chymotrypsin to cleave covalently bound N-acetyl-L-tryptophan (Ac-Trp-OH) from the surfaces of aminopropylated controlled pore glass (CPG) and the polymer PEGA(1900) was investigated. Oligoglycine spacer chains were used to present the covalently attached Ac-Trp-OH substrate to the aqueous enzyme. In the absence of the oligoglycine spacer chain, the rate of release was relatively slow, especially from the PEGA1900. These slow rates reflect the position of the amino group to which Ac-Trp-OH is covalently attached. On the glass there was a clear optimum with a chain of four glycine residues. For PEGA(1900) there is no real apparent change beyond two glycine residues. The decline in rate beyond these optima are a possible result of changes in oligoglycine structure. Comparing different surface loadings of bound substrate the rate of release of Ac-Trp-OH from CPG with a pore diameter of 1200 A was optimal when using 83% of the maximum that can be coupled, then fell again at higher loading. The rate of Ac-Trp-OH release from CPG was the same for surface coverages of 0.4 and 1.0. The introduction of permanent surface charges on CPG(1200) exhibits a distinct influence on enzymatic cleavage with an increase in the rate of biocatalysis at the surface. Optimal presentation of covalently immobilized substrate on different supports by use of appropriate linkers leads to favorable biocatalysis from the support.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available