4.6 Article

Adsorption kinetics of cationic polyelectrolytes studied with stagnation point adsorption reflectometry and quartz crystal microgravimetry

Journal

LANGMUIR
Volume 24, Issue 14, Pages 7329-7337

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la800198e

Keywords

-

Ask authors/readers for more resources

The effects of charge density, pH, and salt concentration on polyelectrolyte adsorption onto the oxidized surface of silicon wafers were studied using stagnation point adsorption reflectometry and quartz crystal microgravimetry. Five different polyelectrolytes-cationic polyacrylamides of four charge densities and one cationic dextran-were examined. The adsorption kinetics was characterized using each technique, and the adsorption kinetics observed was in line with the impinging jet theory and the theory for one-dimensional diffusion, respectively. The polyelectrolyte adsorption increased with pH as an effect of the increased silica surface charge. A maximum in the saturation adsorption for both types of polyelectrolytes was found at 10 mM NaCl concentration. A significant adsorption also occurred at I M NaCl, which indicated a significant nonionic contribution to the adsorption mechanism. The fraction of solvent in the adsorbed layer was determined to be 70-80% by combining the two analysis techniques. This indicated a loose structure of the adsorbed layer and an extended conformation at the surface, favoring loops and tails. However, considering the solution structure with a hydrodynamic diameter larger than 100 nm for the CPAM and a thickness of the adsorbed layer on the order of 10 nm, the results showed that the adsorption is accompanied by a drastic change in polymer conformation. Furthermore, this conformation change takes place on a time scale far shorter than seconds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available