4.4 Article Proceedings Paper

Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs)

Journal

LANGENBECKS ARCHIVES OF SURGERY
Volume 394, Issue 3, Pages 495-502

Publisher

SPRINGER
DOI: 10.1007/s00423-009-0472-1

Keywords

Mesenchymal stem cells; Silver nanoparticles; Cytokine release; Chemotaxis

Categories

Ask authors/readers for more resources

Silver nanoparticles (Ag-NPs) are widely used in different areas, e.g., in the food, electronic, or clothing industry due to well-known slow-release antiseptic activities. Despite the widespread use of nanosilver, there is a serious lack of information concerning the biological activities of nanosilver on human tissue cells. In this study, the influence of spherical Ag-NPs (diameter about 100 nm) on the biological functions (proliferation, cytokine release, and chemotaxis) of human mesenchymal stem cells (hMSCs) was analyzed. The results showed a concentration-dependent activation of hMSCs at nanosilver levels of 2.5 mu g mL(-1), and cytotoxic cell reactions occurred at Ag-NPs concentrations above 5 mu g mL(-1). Cell proliferation and the chemotaxis of hMSC both decreased with increasing Ag-NPs concentrations. Different effects on the cytokine release from hMSCs were observed in the presence of Ag-NPs and Ag+ ions. The release of IL-8 was significantly increased at high but noncytotoxic concentrations of Ag-NPs (2.5 mu g mL(-1)). In contrast, the levels of IL-6 and VEGF were concomitantly decreased compared to the control group. The synthesis of IL-11 was not affected at different Ag-NP concentrations. The agglomeration tendency of Ag-NPs in different biological media increased with a high electrolyte content, e.g., in RPMI. However, complexation with fetal calf serum in the cell culture media stabilized the Ag-NPs against agglomeration. In summary, the results showed that Ag-NPs exert cytotoxic effects on hMSCs at high concentrations but also induce cell activation (as analyzed by the release of IL-8) at high but nontoxic concentrations of nanosilver.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available