4.7 Article

Edge and area effects on avian assemblages and insectivory in fragmented native forests

Journal

LANDSCAPE ECOLOGY
Volume 27, Issue 10, Pages 1451-1463

Publisher

SPRINGER
DOI: 10.1007/s10980-012-9800-x

Keywords

Area effects; Avian insectivory; Edge effects; Exotic birds; Forest fragmentation; Mosaic landscapes; Native birds; New Zealand; Plasticine models

Funding

  1. European Union-New Zealand exchange programme TRANZFOR [nPIRSES-GA-2008-230793]
  2. New Zealand Ministry for Science and Innovation

Ask authors/readers for more resources

Disentangling the confounded effects of edge and area in fragmented landscapes is a recurrent challenge for landscape ecologists, requiring the use of appropriate study designs. Here, we examined the effects of forest fragment area and plot location at forest edges versus interiors on native and exotic bird assemblages on Banks Peninsula (South Island, New Zealand). We also experimentally measured with plasticine models how forest fragment area and edge versus interior location influenced the intensity of avian insectivory. Bird assemblages were sampled by conducting 15 min point-counts at paired edge and interior plots in 13 forest fragments of increasing size (0.5-141 ha). Avian insectivory was measured as the rate of insectivorous bird attacks on plasticine models mimicking larvae of a native polyphagous moth. We found significant effects of edge, but not of forest patch area, on species richness, abundance and composition of bird assemblages. Exotic birds were more abundant at forest edges, while neither edge nor area effects were noticeable for native bird richness and abundance. Model predation rates increased with forest fragmentation, both because of higher insectivory in smaller forest patches and at forest edges. Avian predation significantly increased with insectivorous bird richness and foraging bird abundance. We suggest that the coexistence of native and exotic birds in New Zealand mosaic landscapes enhances functional diversity and trait complementation within predatory bird assemblages. This coexistence results in increased avian insectivory in small forest fragments through additive edge and area effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available