4.7 Article

Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect

Journal

LANDSCAPE ECOLOGY
Volume 24, Issue 5, Pages 657-672

Publisher

SPRINGER
DOI: 10.1007/s10980-009-9340-1

Keywords

Mountain pine beetle; Dendroctonus ponderosae; Growth rate prediction; Phenology; Temperature change; Insect outbreak

Ask authors/readers for more resources

It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a model of population success measured using annual growth rates derived from aerially detected counts of infested trees. This model bridges the gap between phenology predictions and population viability/growth rates for mountain pine beetle. The model is parameterized and compared with 8 years of data from a recent outbreak in central Idaho, and is driven using measured tree phloem temperatures from north and south bole aspects and cumulative forest area impacted. A model driven by observed south-side phloem temperatures and that includes a correction for forest area previously infested and killed is most predictive and generates realistic parameter values of mountain pine beetle fecundity and population growth. Given that observed phloem temperatures are not always available, we explore a variety of methods for using daily maximum and minimum ambient temperatures in model predictions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available