4.6 Article

AN EXCEPTIONAL RAINFALL EVENT IN THE CENTRAL WESTERN PYRENEES: SPATIAL PATTERNS IN DISCHARGE AND IMPACT

Journal

LAND DEGRADATION & DEVELOPMENT
Volume 26, Issue 3, Pages 249-262

Publisher

WILEY
DOI: 10.1002/ldr.2221

Keywords

exceptional rainfall event; flood; flood propagation; Yesa reservoir; central Pyrenees

Funding

  1. Spanish Ministry of Economy and Innovation [CGL2011-27753-C02-01, CGL2011-27753-C02-02, CGL2011-24185, CGL2011-27574-C02-01]
  2. European Commission [FP7-ENV-2007-1-212250]
  3. Aragon Government
  4. European Social Fund (ESF-FSE)
  5. (Spanish Ministry of Economy and Innovation, Programme Juan de la Cierva)

Ask authors/readers for more resources

An exceptional rainfall and hydrological event occurred on 19-21 October 2012 in the central western Pyrenees and was particularly significant in the Upper Aragon River basin and its tributaries, mainly the Irati River. Analysis of historical records showed that, considered separately, the event of 19 and 20 October ranked between the second and fifth highest most extreme daily precipitation events. For the two days combined (with a total between 200 and 260mm), the precipitation event was the most extreme 2-day event among all observation stations but one. The consequent flood destroyed part of an urban area, and a long stretch of a national road triggered landslides, enlarged the alluvial plain and caused generalised soil erosion in cultivated fields cropped with winter cereals. Badlands in the marls of the Inner Depression yielded high volumes of sediment. The floods in the tributaries were relatively moderate (return periods of 14-42years), whereas in the Upper Aragon River, the flood corresponded to a return period of approximately 400-500years and to 142years at the end of the Yesa reservoir, although difficulties in estimating the discharge increased the uncertainty of these values. The Yesa and Itoiz reservoirs considerably reduced the intensity of the flood in the middle and lower Aragon River and confirmed the importance of the water level in the reservoirs when such rainfall events occur. The water storage in the Yesa reservoir increased from 16% to 53% as a consequence of the event. More integrated studies are necessary to decrease the risks associated with flood hazards. This is particularly the case in mountain areas, where the steep slopes and longitudinal gradients of the rivers shorten the concentration time of floods and increase the energy that erodes channels and riverbanks. Copyright (c) 2013 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available