4.6 Article

FIELD OBSERVATIONS OF WINDBLOWN SAND AND DUST IN THE TAKIMAKAN DESERT, NW CHINA, AND INSIGHTS INTO MODERN DUST SOURCES

Journal

LAND DEGRADATION & DEVELOPMENT
Volume 24, Issue 4, Pages 323-333

Publisher

WILEY
DOI: 10.1002/ldr.1129

Keywords

aeolian dust; windblown sand; dust activity; potential dust emissions; Taklimakan Desert; PR China

Funding

  1. Natural Science Foundation of China [40971006]
  2. Desert Surface Processes and Mechanisms Program of the Hundred Talents Project of the Chinese Academy of Sciences

Ask authors/readers for more resources

Despite the importance of desert dust at global and regional scales, its exact provenance is often unclear. The Taklimakan Desert in northwest China is a common source of high-frequency regional dust storms and is also a large source of global dust production. On the basis of field observations and the determination of the fraction of aeolian dust in surface samples, we characterized the relative intensity of windblown sand/dust processes in the Taklimakan and the volume of dust emitted (PM10) during these processes. Major dust sources were degraded lands on the eastern desert margin, the Gobi and alluvial, fluvial and aeolian sediments occurring on the desert margin. These areas have high PM10 emission capacity due to high-surface PM10 concentrations and intensive windblown sand/dust activity. Despite having intensive windblown sand activity, the central desert had lower PM10 dust emission capacity (<16kgday(-1)m(-2) in spring, <008kgday(-1)m(-2) in other seasons) due to lower surface PM10 fraction. The dry Taitema Lake bed was a source of potentially high dust emissions (at least 44-17kgday(-1)m(-2) for the monitoring period) due to the intensity windblown sand/dust activities, despite low PM10 concentrations. The dry river beds on the southeastern desert margin had lower dust emission potential due to low PM10 concentrations and windblown sand/dust activity. Most dust emission sources lie in the paths of prevailing winds, leading to aeolian dust transported to and deposited in the desert hinterland or Hotan, Yutian and Minfeng areas, where wind stream convergence leads to high-frequency dust storms. Copyright (c) 2011 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available